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Abstract 

It is well-known that irrational numbers play a relevant role in mathematics and basic 

sciences e.g., the number introduced by the Babylonians and Egyptians of ancient times, 

Euler´s number e to explain exponentially-varying processes, and the   of Conway´s 

cosmological theory. Therefore, a strong understanding of real numbers is important. Many 

mathematicians such as R. Dedekind and W. Rudin, when introducing the real numbers via 

the rational and irrational numbers and the concept of Dedekind cuts, make use of 

“convenient numbers” such as Rudin's h which seem to be “taken out of a hat.” From a 

pedagogical point of view, the use of these numbers has proven to be a sticky issue to both 

students and professors because there has been little, if any, justification for their 

"convenience". In this paper the authors, using Dedekind cuts explain the introduction of 

those “convenient” numbers using the infinite descent method. The Extended Euclidean 

Convergent Algorithm is used to create convergent fractions to approximate irrational 

numbers with a desired approximation via the computer.  

Keywords: Dedekind cuts, Infinite descent, Well-ordering Principle, Extended Euclidean 

Convergent Algorithm, Irrationals 

JEL Classification: C 

 

 

1. Introduction 

In elementary arithmetic we learn about the decimal expression of rational numbers: a 

rational number has either a finite decimal expression or an infinite periodic one. It is well 

known that rational numbers, its set denoted by Q, are inadequate to solve certain algebraic 

problems such as the existence of rational numbers which square equals 2 [1], or the 

existence of a rational solution of the quintic equation  

 x5 – x – 1= 0 (whose only real root is 1.1673039782614186843…). Thus, the decimal 

expression of an irrational is neither finite nor ever becomes periodic. In his quest to 

introduce the real numbers using algebraic methods, Dedekind introduced the notion of 

cuts [2]. As stated by Dedekind, every rational number a divides Q into two classes A1 and 

A2. The class A1 is the set of rational numbers a1 less than every number a2 of the class A2. 

The rational number a itself can be associated with either class so it could be the greatest 

number of A1 or the least of A2. Dedekind called any separation of the rational numbers into 

two classes, as just described, a cut or schnitt in its original German terminology. Dedekind 
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also pointed out that there are cuts not produced by rational numbers such as the ones 

produced by integers which are not a perfect square of any other integer e.g., the integer 

D=2 as shown later in this work.  

Irrational numbers are important not because of the mere impossibility of expressing them 

exactly as ratios of integers, but also because they play important roles in mathematics, 

geometry, and natural sciences. Such is the case of the number  = 3.1415926535…for 

which tables with 1000 or more decimals have been published and which the ancients 

already considered worth to calculate. Notably, archeologists have discovered also that 

ancient Babylonians and Egyptians succeeded writing  with 2-3 decimals. Many other 

examples of relevant irrationals can be presented, among them Euler´s number e, the base 

of natural logarithms and key to explain all exponentially varying processes, and Conway´s 

constant λ=1.303577269034296 [3]. In passing, these three irrationals are said to be 

transcendentals also. That is, they are not roots of any non-zero polynomial which 

coefficients are rational numbers. In Section 2 we present the Dedekind non-rational cuts. 

Section 3 is devoted to Rudin´s treatment of cuts showing the existence of “gaps” in Q. 

Section 4 considers the basic representation of integers in two’s complement notation and 

indicates some of the problems of representing digitally both rationales and irrational 

numbers in a computer. In Section 5 we consider the rational approximations to irrational 

numbers. Section 6 is devoted to the Euclidean Convergent Algorithm and its application 

to obtain rational approximations to any irrational number using a computer. Finally, 

Section 7 is devoted to our concluding remarks.   

 

2. The Existence of Non-rational cuts 

The following theorem illustrates the existence of infinitely many cuts not produced by 

rational numbers as indicated by Dedekind. The authors have amplified the original proof 

and have clarified some of its details. From now on we will use the standard notation for 

denoting the set of integers and positive integers as Z and Z+ respectively. Likewise, we 

denote the positive rational numbers as Q+. 

Theorem 1 “Every positive integer D which is not a perfect square of any other integer 

lies between the square of two consecutive positive integers, moreover D is not a perfect 

square of any rational number.” 

 

As stated, the thesis of this theorem consists of two parts. The first is concerned with a 

relationship between integer numbers (D and two other integers). The second concerns the 

nature of the number D itself which is not a perfect square of any rational number. We will 

address these two issues in order. 

 

Proof of part 1 (by the method of contradiction or reduction ad absurdum) 

“Every positive integer D which is not a perfect square of any other integer lies between 

the square of two consecutive positive integers.”  
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This statement can be translated into standard mathematical notation as follows: 

(DZ+) (aZ) D  a2 →  (  Z+)  2 < D < ( + 1)2 

 

To prove it let’s consider the set of all positive integers which square is less than D. This 

set is clearly non-empty and has a maximum element . Therefore, we can write 2 < D. 

As required by the method of contradiction let’s begin by writing the negation of the thesis. 

Therefore, using De Morgan’s laws [4] we get: 

(Z+)  2  D   or   D  ( + 1)2 

 

By the mere definition of the integer  given above, the first inequality 2  D cannot be 

satisfied.  Now, let’s consider the second inequality D  ( + 1)2. This last statement cannot 

be satisfied either because ( + 1) >   and we have assumed that  is the maximum integer 

which square is strictly less than D. Therefore, D lies between the two integers 2 and ( + 

1)2. Q.E.D. 

 

Thus, this positive integer D divides the set Q into two classes: Class A1 contains all 

positive rational numbers a1 such that their squares 𝑎1
2 < 𝐷, and Class A2 containing all 

other rational numbers. Interestingly, this number D itself cannot be the square of any 

rational number as we now demonstrate in the second part of the theorem. 

 

Proof of part 2 (by the method of infinite descent) 

“There is no rational number which square equals D” 

A proof by the method of infinite descent is also a type of proof by contradiction. The basic 

difference between a proof by this method and a standard proof by contradiction is that, in 

an infinite descent proof, we look for a sequence of infinite decreasing positive numbers 

that satisfies a previously defined condition. Because the positive integer numbers have a 

least element according to the Well-ordering Principle [5] an infinite sequence of 

decreasing positive numbers is not possible. The proof we present below follows 

Dedekind’s [2] but has been expanded to clarify some of its steps and conclusion.  

 

As indicated above we begin by negating the thesis. That is, we assume that there is a 

rational number p/q with q 0 such that (p/q)2 = p2/q2 = D where, without loss of generality, 

we can assume that p and q are both positive integers and their gcd(p,q) = 1. The latter 

expression for D can be rewritten in quadratic-equation form as   

p2− Dq2 = 0 

 

According to the infinite descent method, what we need to find is a new rational number 

numerically equivalent to D which denominator is less than q. 
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Using a positive integer  it is possible to obtain a relationship between p and q of the 

following form:  

q < p < ( + 1)q 

 

In fact, this latter relationship can be obtained as shown next. From part 1 of the theorem, 

we already showed that 

2 < D < ( + 1)2, 

   

replacing D by its equivalent (p/q)2 in this last inequality we may obtain          

2 < (p/q)2 < ( + 1)2  2 q2 < p2 < q2 ( + 1)2    q < p < ( + 1)q 

 

Subtracting q from each member of this last inequality we get 

                                                  0 < p − q < q 

 

This inequality shows that p − q is a positive integer less than q. Let’s call q' this positive 

integer. That is, q' = p− q. We will use q' as the denominator of the new rational number 

being sought. Because the denominator of this new rational number is less than q (the initial 

denominator of D) the numerator p´  of the new rational number must be also less than the 

numerator p of D. This is so because the numbers must be numerically equivalent. This 

new numerator should be positive and of the following form: 

𝑝′ =
𝑝(𝑝 − 𝜆𝑞)

𝑞
 

 

That p' is less than  p, the numerator assumed for D, can be easily demonstrated. In fact, 

knowing already that 0 < p − q < q and dividing this inequality by positive q, we obtain 

0 <  
𝑝 − 𝜆𝑞

𝑞
< 1 

 

Multiplying the last inequality by positive p and considering the actual value of p' defined 

a few lines above we have that 

𝑝′ =  
𝑝 (𝑝 − λ𝑞)

𝑞
< 𝑝 

 

This last inequality indicates that p′ is less than p as we wanted to show. 
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'The values of p' and q' just found satisfy the quadratic-equation stated before for D. That 

is, p′2 − D q′2 = 0. Therefore, a new rational number numerically to equivalent to D and 

with a smaller denominator q′ (q′ < q) has been found. Continuous repetition of this 

procedure will allow us to find an infinite sequence of decreasing integers q′, q′′, q′′′… 

which, as we indicated before is not possible due to the Well-ordering Principle. From this 

contradiction, we can conclude that our hypothesis about D being the square of a rational 

is false. Therefore, D is an irrational number. Q.E.D. 

 

3. Rudin rational cuts  

We now want to use the concept of Dedekind cuts to show explicitly that the set Q of 

rational numbers does contain “gaps” such as the lack of a rational number whose square 

is a positive integer D. Consider then the rather familiar case D=2 and state our next 

theorem as follows: 

 

Theorem 2 “Let A be the set of all positive rational numbers p such that p2 < 2, and B the 

set of all positive rational numbers p such that p2 >2 where A and B are rational Dedekind 

cuts in Q.” 

 

Like Theorem 1, this new theorem consists of two parts, one for set A and one for set B. 

We will address them in that order.  

 

Proof of part 1 (for Set A) 

Proof: Consider first a positive rational p  A   Q , therefore, p2<2. Take now another 

rational q such that q>p, and let q = p + h, (Figure 1), h being a rational such that  

0 < h < 1. The argument is to add this h to p is to get a larger q that would still belong to 

A. We then have: 

 

𝑞2 = 𝑝2 + 2𝑝ℎ + ℎ2 = 𝑝2 + (2𝑝 + ℎ)ℎ, 

 

 

Figure 1 

p lies in the set A Q of rational numbers which square p2 is less than 2; q is a rational such 

that  p<q  and  q - p = h. 
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Since 0<h<1 we may rewrite the last equation as: 

𝑞2 < 𝑝2 + (2𝑝 + 1)ℎ 

 

Because we want to show that qA we need to eliminate the factor (2p+1) as well as p2 

from the last inequality. A little thought led us to write the number h as fraction of the form 

(2− p2)/(2p+1). Replacing this value in the last inequality we obtain 

 

𝑞2 < 𝑝2 + (2𝑝 + 1) [
2 − 𝑝2

2𝑝 + 1
] = 𝑝2 + (2 − 𝑝2) = 2     𝑞2 < 2 

 

Therefore, the rational q>p that was introduced above does belong in A. Next, we consider 

another rational q´>q and apply to it the same procedure applied to q above, to show  𝑞′2 <
2.  By simple iteration of the procedure, we will get the infinite succession of positive 

rational numbers q, q′, q′′, q′′′… that belong to A and are all less than 2.  

 

Proof part 2 (for Set B) 

 

Now we may proceed to consider the set B  Q that will result in an infinite sequence of 

rational q<p (Figure 2) which squares q2 never equals integer 2. The proof follows similar 

steps as used before for set A where, again, a rational h is introduced. 

  

                    

Figure 2 

p lies in the set B Q of rational which square p2 is larger than 2; q is a rational such that q 

< p  and   p - q = h. 

 

Consider a rational p  B, therefore, p is positive and p2 >2. Take another rational q such 

that q < p, we need to show that q2 > 0. 

 

Thus, let q= p− h, h being a positive rational. We first need to show that q>0 to guarantee 

that the chosen q, although smaller than p, do belong to the cut B (which rational elements 
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must be positive). Because this time p2>2, when writing h we will subtract 2 from p2 in the 

numerator, and let h be of the following form: 

 

ℎ =
𝑝2 − 2

2𝑝
 

 

(c.f. with the case of set A above, in which p2<2 ). Thus, since q=p− h we get:  

 

                    𝑞 = 𝑝 −
𝑝2−2

2𝑝
=

2𝑝2−𝑝2+2

2𝑝
= (

𝑝

2
+

1

𝑝
) > 0; 

 

and being positive the rational q may lie in B. Finally, we may confirm that qB by 

explicitly evaluating q2: 

 

                      𝑞2 =  [𝑝 −
𝑝2−2

2𝑝
]

2

= 2 + [
𝑝2−2

2𝑝
]

2

> 2     qB, 

 

Thus, we have found a rational q less than p that lies in the set B of the cut. We may apply 

the mathematical procedure just above to a second rational q′< q to prove that it too belongs 

to B. By iterating the procedure, we get an infinite descending sequence q, q′, q′′,.. in which 

all qi′ are in cut B. However, this succession never ends in a rational q which square is D=2.  

Q.E.D. 

 

As stated by Dedekind [2] and considered also by Rudin [1]: “whenever, we have to do 

with a cut (A, B) produced by no rational number, we create a new irrational number , 

which we regard as completely defined by this cut (A, B); we shall say that the number  

corresponds to this cut, or that it produces this cut.” In the theorem just above the cut 

corresponds to the irrational  =2 (see Figs. 1, 2) 

 

4. Representing Rational and Irrational Numbers in the Computer 

In the computing literature there are various finite precision representations of rational 

numbers. However, a representation of irrational numbers is generally achieved by 

approximate solutions based on finite representations, because it is not possible to represent 

an infinite number of decimal digits with a finite number of 'chunks' of information, be it 

binary, decimal or any other numerical positive integer radix ß  

(ß ≥ 2). Because of this, any finite representation of an infinite domain such that of the 

irrational numbers must have a "rounding function" that maps that domain into a chosen 

finite set of values that can be represented in the computer [7]. 
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Traditionally, when representing rational numbers p/q with q ≠ 0, both the numerator and 

denominator are represented in binary using the two's complement convention which 

allows representation of integer numbers in the range from - 2n-1 up to 2n-1 – 1 where n is 

the number of bits in the memory unit. In this type of numerical representation, the most 

significant bit (or leftmost bit) plays a dual role. First, it indicates the sign of the number, 

generally 0 for positive and 1 for negative. Second, it participates in computations as any 

other bit. Due to the presence of zero, the positive numbers that can be represented is one 

less than the number of negative ones. However, for explanation purposes we will consider 

only positive integers in the range 0 to 2n-1 – 1 and their binary representation. A typical 

representation of a n-bit memory unit is shown in Figure 3. The numbers in the range 0…(n-

1) indicate the position of the bits. These numbers are used as the exponents of the binary 

base = 2 when the number is expanded to obtain its decimal equivalent.  

 

sign bit n-2 … 2 1 0 

      

Figure 3 

Typical representation of a computer’s register in two’s complement convention 

 

In this section, we will follow the Kornerup and Matula's notation [7] with a simplification 

of their approach. Rational numbers are then represented as a two-word encoding. Each 

word is represented as indicated in Figure 3. Rational arithmetic can be performed as 

indicated next. In this notation,  is a rounding function and the rational numbers are 

irreducible. That is, gcd(p,q) = 1 

 

 

     

 

 

 

 

However, the fixed format of Figure 3 is not the most efficiency for representing very large 

or small values. A more flexible representation such as the “floating slash” representation 

has been proposed. Under this new scheme the boundary between the space allocated to 

these two consecutive words is allowed to “float”. The boundary is indicated by a “slash” 

and hence the name of this representation. The set of representable rational numbers is 

dependent on both, the radix being used and the number of available digits in a computer 

word. Under this scheme, at least 2k-2 different representations are available in binary. The 

efficiency of these representations is determined by the ration of irreducible fractions 

(where gcd(p,q) = 1) to the total of fractions that can be represented. [6, 8]. 

Addition 

Multiplicati

on 

Difference 

Division 



Journal of Information Systems & Operations Management, Vol. 16.2, December 2022 
 

Pag. 93 / 283 

 

5. Rational Approximations to Irrational Numbers 

As already stated in the introduction it is a well-known fact from elemental arithmetic that 

every rational number can be expressed as a terminating or periodic fraction [6, 8]. Yet, 

pure period fractions such as 0.999… o mixed periodic fractions with a period of 9 such as 

0.0999…, 0.1999…, 0.2999…, and the like cannot be generated by common fractions 

(rational) of the form p/q with q ≠ 0.  

However, it is possible to obtain approximations to each of these numbers as we desired. 

One such procedure, called the Extended Euclidean Convergent Algorithm (EECA) 

provides a sequence of convergent fractions pi/qi for i = 0,1…,n where n the value of n is 

determined by the algorithm itself when a given condition is satisfied. The notion of 

convergent fractions is based on the definition of continued fractions which can be 

represented in standard abbreviated notation as [a0/a1/a2/…/an] where each ai ≥ 0 is an 

integer number called a partial quotient. As demonstrated in [7, 8] and indicated here 

without proof "Every rational number can be expressed by a finite simple continued 

fraction." Partial quotients can be obtained by application of the Euclidean Algorithm. As 

indicated in [6] and as a justification of the EECA algorithm, an approximation by rational 

numbers to any irrational number can be justified by Theorem 3 which will be stated here 

without a formal proof. The interested readers can refer to [6]. 

 

Theorem 3 “Given any irrational number  and any positive integer k, there is a rational 

number p/q which denominator q does not exceed k such that 

-1/nk <  - p/q < 1/nk 

 

In this work we will use an extension of the Euclidean Algorithm called the Extended 

Euclidean Convergent Algorithm [7, 8]. This algorithm is shown below in pseudocode and 

is applied to rational numbers of the form p/q with q ≠ 0. The algorithm is called Extended 

because it incorporates the computations of the numerators and denominators of the 

convergent fractions denoted by pi and qi respectively. The assignment operator and the 

equality operator are indicated following the language R convention of "<-" and "==". In 

this algorithm, floor stands for the function generally known in the mathematical literature 

as the greatest integer function. The EECA algorithm is presented here in pseudocode 

which can be easily translated and implemented in any modern programming language.  

 

6. Extended Euclidean Convergent Algorithm (EECA)    

Input: integers p  ≥ 0, q > 0 

Output: sequence integer n and sequences {ai}, {pi/qi} i = 0,1,…n 

Initialization: b-1 <- q;  b-2 <- p;  p-1 <- 1; p-2 <- 0;  q-1 <- 0; q-2 <- 1 

i  <- 0 

repeat 
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         ai <- floor (bi-2/bi-1) # quotient 

          bi <- bi-2 – aibi-1           # remainder 

         pi <- aipi-1 + pi-2 

qi <- aiqi-1 + qi-2 

until bi == 0 

 

Example 1 An application of the EECA algorithm [7] 

Let's consider the fraction p/q = 173/55. Table 1 shows the execution of the algorithm. The 

first two rows are the initial conditions of the algorithm for i = -1 and -2. 

i ai bi pi qi 

-2  173 0 1 

-1  55 1 0 

0 2 8 3 1 

1 6 7 19 6 

2 1 1 22 7 

3 7 0 173 55 

Table 1 

 

In this case, the convergent sequence is obtained by forming the fractions pi/qi for i = 0…3. 

Therefore, the convergent sequence is p0/q0 = 3/1 = 3; p1/q1 =19/6 ≈ 1.6666…; p2/q2 =   22/7 

≈ 3.1423…; p4/q4 = 173/55 ≈ 3.1454…. Notice also that the sequence is convergent because 

each pi/qi < pi+1/qi+1. 

 

7. Concluding remarks 

Whenever the real numbers are introduced via the irrational sets via Dedekind cuts there 

are always “convenient” numbers which are used without little or no justification. From a 

pedagogical point of view, these convenient numbers are generally a source of frustration 

to both students and professors. In this work, the authors have attempted to explain and 

justify some of the sticky points related to the convenience of these numbers, their nature, 

and the reason for being so using primarily the infinite ascent method. This method, 

although a very powerful proving mechanism is, in general, not widely used or at least not 

mentioned by this name. The authors wanted to illustrate an application of the method using 

Dedekind cuts. The EECA algorithm is presented to obtain rational approximations to any 

irrational number via the computer.  
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